VIDEO COLOR SUPERIMPOSER

■ GENERAL DESCRIPTION

NJM2256 is the multi-functional color super-imposer IC for videobase band (Y, R-Y, B-Y), Various type of Y, R-Y, B-Y output signals can bemade by the digital controlled signals.
The signal control at the base band, made it possible on operation with less extermal parts, as well as for non adjustment on operation.

NJM2256 can be operated much higher switching speed comparing to NJM2247.

- FEATURES

- 5V single Power Supply
- 8 Types Color Super-imposer
- Burst Flag Insert Function
- Y Inversion, C Inversion Function
- NTSC / PAL Matching
- Non Operational Adjustment
- Less External Parts
- Higher switching speed can be made comparing to NJM2247
- Package Outline DMP20
- Bipolar Technology

■ RECOMMENDED INPUT CONDITIONS

- Y Signal $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- R-Y Signal $1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- B-Y Signal $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- Control Voltage
- Low Level 0 to 0.25 V
- High Level 4.75 to 5 V
- PACKAGE OUTLINE

NJM2256M

- PIN CONFIGURATION

Pin Function

1. $Y_{\text {out }}$
2. GND
3. V^{+}12. HBF Pulse
4. R 13. BF Pulse
5. G 14. NTSC/PAL Switching
6. B 15. Clamp Pulse
7. $\mathrm{B}-\mathrm{Y}_{\text {in }}$ 16. Character Pulse
8. $B-Y_{\text {out }}$
9. Yin
10. $\mathrm{R}-\mathrm{Y}_{\text {in }}$ 18. Inversion Set Up Correction
11. $\mathrm{R}-\mathrm{Y}_{\text {out }}$
12. Y Inversion
13. C Inversion
14. BLK Pulse

NJM2256M

ONTRO	HARACTERIS				(V+
PIN NO.	PIN FUNCTIONS	THRESHOLD LEVEL (V)		SINK / SOURCE CURRENT ($\mu \mathrm{A}$)	
		LOW	HIGH	OV	5 V
3	R				
4	G	0.7	0.8	-500	500
5	B				
3					
4	(at C Inversion)	2.5	2.6	-100	100
5					
10	C Inversion	3.5	4.5	-200	400
12	HBF Pulse	0.5	2.0	-2	1
14	NTSC / PAL	0.7	0.8	0	150
15	Clamp Pulse	2.5	2.8	-2	0
16	Character Pulse	0.5	0.9	-0.5	0
19	Y Inversion	0.4	0.8	-0.5	0
20	BLK Pulse	0.4	0.8	-0.5	0

- BLOCK DIAGRAM

- INFORMATIONS

Following four points are the outstanding function of the NJM2256. These functions are to go through three input (Y , R-Y, B-Y) signals control by ten control pins.

1. Color Superimpose

DC Level of each equivalent colors shall be supplied to $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ inputs.
2. Burst Flag Insertion

150 mV burst flag shall be added to $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ input signals.
Burst flag is selected by the NTSC / PAL switch.
3. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees. The color phase of the imposed character shall not be altered. This function shall be proceeded when inverting the burst flag, and at the same time, the imposed character level shall be inverted too.
4. Y Inversion

It is the brightness level inversion. The imposed character color shall not be changed. This function shall be proceeded the switching Y signal output to the inverter side.

Fig. 1 Video Camera Application

- EQUIVALENT CIRCUIT

PIN NO. | PUNCTION |
| :---: |
| FiNSIDE EQUIVALENT CIRCUIT | PINNO.

- EQUIVALENT CIRCUIT

PIN NO. | PIN |
| :---: |
| FUNCTION | INSIDE EQUIVALENT CIRCUIT

- ABSOLUTE MAXIMUM RATINGS
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V^{+}	8	V
Power Dissipation	P_{D}	350	mW
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS

[^0]- ELECTRICAL CHARACTERISTICS

- APPLICATION NOTES

I/ O Explanation

- Supply Voltage	V^{+}	5 V	(2)
	GND		11
- Input Signals	Y	$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	17
	$\mathrm{R}-\mathrm{Y}$	$1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	8
	$\mathrm{~B}-\mathrm{Y}$	$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	6
- Output Signals	Y	$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1
	$\mathrm{R}-\mathrm{Y}$	$1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	9
	$\mathrm{~B}-\mathrm{Y}$	$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	7

- APPLICATION NOTES

I/ O Explanation

- Control Pin Low=0V, HIGH=5V

R (3)
G (4) Superimposed color adjustment
B (5) -
Clamp Pulse
Character Pulse
HBF Pulse
BLK Pulse

C Inversion
Y Inversion Color difference, brightness inverting pin

NTS / PAL Switch

- Adjusting Pin (Normally open \rightarrow non adjustment)
BF level
(13) Burst flag insert level adjusting pin.
Inversion set up correction
(18) Y inversion signal level adjusting pin.

1. Input Signal

Superimposed color level shall be determined by the following standard signal level.

$$
\begin{array}{ll}
\mathrm{Y} & 0.7 \mathrm{~V}_{P-P} \\
\mathrm{R}-\mathrm{Y} & 1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\
\mathrm{~B}-\mathrm{Y} & 0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}
\end{array}
$$

The character output standard level on the specification shall be determined through calculation out of 75% of superimposed color level.
(In order to avoide the clipping of the encoding signal, the character output level is determined to lower level)

- The character output level converting expression

The basic expression

$$
\begin{gathered}
E_{R}-E_{Y}=0.70 E_{R}-0.59 E_{G}-0.11 E_{B} \\
E_{B}-E_{Y}=-0.30 E_{R}-0.59 E_{G}+0.89 E_{B} \\
E_{Y}=0.30 E_{R}+0.59 E_{G}+0.11 E_{B}
\end{gathered}
$$

From standard level and practical input level, each color signal level imposed in R-Y, B-Y and Y signals are as in the following.

$$
\begin{aligned}
V_{R-Y} & =0.75 \times 1\left[V_{P-P}\right] \times E_{R-Y} / 1.4 \\
& =0.375 E_{R}-0.316 E_{G}-0.059 E_{B} \\
V_{B-Y} & =0.75 \times 0.7\left[V_{P-P}\right] \times E_{B-Y} / 1.78 \\
& =-0.088 E_{R}-0.174 E_{G}+0.263 E_{B} \\
V_{Y} & =0.75 \times 0.7\left[V_{P-P}\right] \times E_{Y} / 1 \\
& =0.158 E_{R}+0.310 E_{G}+0.058 E_{B} \\
& \left(E_{R}, E_{G}, E_{B}, L O W 0, H I G H 1\right)
\end{aligned}
$$

2. Clamp Pulse

During the interval of blanking, input the pulse through clamp pulse pin 20 the blanking level (0 level) of input signal (Y, R-Y, B-Y) is to be fixed at the bias point within the IC.
Note) The pulse width of clamp pulse shall be set more than $3 \mu \mathrm{~s}$. (see figure 2)

Flg. 2 Clamp Pulse Width

3. Character Color adjustment

Superimposed color adjustment of the character can be determined in eight different colors, by choosing R, G, B input levels.

(LOW OV, HIGH 5V)				
R	G	B	COLOR	
5	5	5	White	
5	5	0	Yellow	
0	5	5	Cyan	
0	5	0	Green	
5	0	5	Magenta	
5	0	0	Red	
0	0	5	blue	
0	0	0	Black	
Character Color Selecting Code				

4. Character Insertion

Pulse informations from outside character generater shall be given input at the character pulse pin 16. During the period of pulse process, the selected color level shall be inserted into each Y, R-Y, B-Y.
5. Burst Flag Insertion

Inputting burst period pulse at the HBF pin 12), the burst flag (150 mV) can be inserted in the B-Y, R-Y signals. At the same time, by putting NTSC / PAL switch 14 the burst flag can be altered to NTSC or PAL system.

	NTSC / PAL SWITCH (14)	
	LOW 0V (PAL)	HIGH 5V (NTSC)
R-Y Signal	+150 mV	non insertion
B-Y Signal	-150 mV	-150 mV

Burst Flag Inserting

Flg. 3 Burst Flag Inserting Example

6. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees setting C inversion pin 10. It is applied that the reference signal (burst flag) shall be inverted into one hundred and eighty degrees at the time of de-coding.

Superimposed character color do not change at the picture inversion.

	C INVERSION PIN (10)	
	LOW 0V	HIGH 5V
Burst	Non Inversion	Inversion

C Inversion Form
7. Y Inversion

The brightness of the picture shall be inverted by setting Y inversion 19. It is that Y signal shall be inverted by the inverter, and then blanking period signal shall be adjusted to the black level with blanking pulse.

Figure 4. Y Inversion Output Example

	Y INVERSION PIN (19)		
	LOW 0V	HIGH 5V	
Y Output	Non inversion	Inversion	
	Y Inversion Form		

8. Adjusting pin
(1) BF Level Pin (13)

It is the burst flag minor adjusting pin. The burst level shall be adjusted at the open voltage, 0.3 V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled st 135 at 165 mV (burst level) on specification.
(2) Inversion Set Up Correction Pin 18

It is the minor adjusting pin of Y inversion signal level. The inverting black level shall be adjusted at the open voltage, 1.8 V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled with 0.59 to 0.77 V (inverting black level) on specification.
9. Pulse Timing

The pulse input timing should be proceeded as in the following.

- TYPICAL APPLICATION

- APPLICATION

This IC requires $1 \mathrm{M} \Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

[^0]: *Remark 1) *tem indicates design assurance rating.

